METHODS IN
ENZYMEOLOGY

Isotope Labeling of Biomolecules -
Labeling Methods

Edited by

ZVI KELMAN

Biomolecular Labeling Laboratory, and Biomolecular Structure and Function Group, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier
CONTENTS

Contributors xiii
Preface xix

Section I
Labeling in Prokarya

1. Robust High-Yield Methodologies for 2H and 2H/15N/13C Labeling of Proteins for Structural Investigations Using Neutron Scattering and NMR 3

Anthony P. Duff, Karyn L. Wilde, Agata Rekas, Vanessa Lake, and Peter J. Holden

1. Introduction 4
2. Media Preparation 7
3. Unlabeled Protein Production 9
4. Deuterated Protein Production 14
5. Multiple Labeling of Proteins for NMR 17
6. Comments on the Method 18
7. Typical Deuteration Levels 22
Acknowledgments 23
References 23

2. Protein Labeling in Escherichia coli with 2H, 13C, and 15N 27

J. Todd Hoopes, Margaret A. Elberson, Renae J. Preston, Prasad T. Reddy, and Zvi Kelman

1. Introduction 28
2. Selection of Induction Method 29
3. Special Considerations When Labeling with Deuterium 30
4. Plasmid and E. coli Strain Selection 30
5. Determination of Isotope Incorporation 32
6. Acclimation of E. coli to Growth in D$_2$O 35
7. Media Preparation 36
8. Protein Expression 40
Acknowledgments 43
References 43
3. *Escherichia coli* Auxotroph Host Strains for Amino Acid-Selective Isotope Labeling of Recombinant Proteins
Myat T. Lin, Risako Fukazawa, Yoshiharu Miyajima-Nakano, Shinichi Matsushita, Sylvia K. Choi, Toshio Iwasaki, and Robert B. Gennis
1. Introduction
2. *E. coli* Auxotrophs for Amino Acid-Selective Isotope Labeling
3. Methods
4. Conclusions
Acknowledgments
References

4. 19F-Modified Proteins and 19F-Containing Ligands as Tools in Solution NMR Studies of Protein Interactions
Naima G. Sharaf and Angela M. Gronenborn
1. Introduction
2. Protocol 1: Biosynthetic Amino Acid Type-Specific Incorporation of 19F-Modified Aromatic Amino Acids
3. Protocol 2: Site-Specific Incorporation of Fluorinated Amino Acids Using a Recombinantly Expressed Orthogonal Amber tRNA/tRNA Synthetase Pair in *E. coli*
4. General Considerations for 19F-Observable NMR Experiments
5. 19F-Modified Protein-Observable NMR Experiments
6. NMR Experiments with 19F-Containing Ligands
Acknowledgments
References

5. Biopolymer Deuteration for Neutron Scattering and Other Isotope-Sensitive Techniques
Robert A. Russell, Christopher J. Garvey, Tamim A. Darwish, L. John R. Foster, and Peter J. Holden
1. Introduction
2. Deuterated Biopolymers
3. Deuterated Chitosan
4. Deuterated Cellulose
Acknowledgments
References
6. Production of Bacterial Cellulose with Controlled Deuterium-Hydrogen Substitution for Neutron Scattering Studies 123
Hugh O’Neill, Riddhi Shah, Barbara R. Evans, Junhong He, Sai Venkatesh Pingali, Shishir P. S. Chundawat, A. Daniel Jones, Paul Langan, Brian H. Davison, and Volker Urban

1. Introduction 124
2. The Occurrence and Properties of Cellulose 127
3. Deuteration of Bacterial Cellulose 129
4. Characterization of Deuterated Cellulose 133
Acknowledgments 142
References 142

7. Isotopic Labeling of Proteins in *Halobacterium salinarum* 147
Thomas E. Cleveland IV and Zvi Kelman

1. Introduction 148
2. Growth and Maintenance of *Halobacterium salinarum* 149
3. Purification of Proteins from *Halobacterium salinarum* 153
4. Summary 163
Acknowledgments 164
References 164

8. Amino Acid Selective Unlabeling in Protein NMR Spectroscopy 167
Chinmayi Prasanna, Abhinav Dubey, and Hanudatta S. Atreya

1. Introduction 168
2. Method Description 171
3. Applications of Selective Unlabeling 182
4. Conclusions 186
Acknowledgments 187
References 187

Section II
Labeling in Eukarya

9. Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR 193
Ying Fan, Sanaz Emami, Rachel Munro, Vladimir Ladizhansky, and Leonid S. Brown

1. Introduction 194
2. Expression and Isotope Labeling in *P. pastoris*: Background 196
3. Isotope Labeling of Membrane Proteins in P. pastoris 197
4. Outlook 207
Acknowledgments 207
References 207

10. Development of Approaches for Deuterium Incorporation in Plants 213
Barbara R. Evans and Riddhi Shah
1. Introduction 214
2. Challenges of Plant Cultivation in D₂O 215
3. Analysis of Deuterium-Labeled Plant Biomass 221
4. Deuterium Labeling of Plants for Metabolic Studies 223
5. Production of Deuterated Plants for Structural Studies 225
Acknowledgments 239
References 239

11. Isotope Labeling of Proteins in Insect Cells 245
Lukasz Skora, Binish Shrestha, and Alvar D. Gossert
1. Insect Cells as Expression System 246
2. General Considerations for Isotope Labeling in Insect Cells 250
3. Amino Acid Type-Specific Isotope Labeling in Insect Cells 252
4. Uniform Isotope Labeling in Insect Cells 256
5. Applications 268
6. Protocols 274
References 284

12. Effective Isotope Labeling of Proteins in a Mammalian Expression System 289
Mallika Sastry, Carole A. Bewley, and Peter D. Kwong
1. Introduction 290
2. Overview of Mammalian Expression 291
3. Protein Expression 299
4. NMR Characterization of Expressed Protein 300
5. Conclusions 302
6. Materials 303
Acknowledgments 303
References 303
Section III

In Vitro Labeling

13. *Escherichia coli* Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins 311
 Takaho Terada and Shigeyuki Yokoyama
 1. Introduction 312
 2. The *E. coli* Cell-Free Protein Synthesis Method 316
 3. Stable Isotope Labeling of Proteins 323
 Acknowledgments 339
 References 340

14. Rapid Biosynthesis of Stable Isotope-Labeled Peptides from a Reconstituted In Vitro Translation System for Targeted Proteomics 347
 Feng Xian, Shuwei Li, and Siqi Liu
 1. Introduction 348
 2. Equipment, Materials, and Buffers 350
 3. Section 1: DNA Template Preparation 351
 4. Section 2: Peptide Synthesis with PURE System 355
 5. Section 3: Enrichment and Digestion of Synthesized Peptide 358
 6. Section 4: Quantification of PURE-Synthesized Peptide 360
 7. An Example 363
 8. Summary and Discussion 365
 Acknowledgment 365
 References 365

15. Labeling of Membrane Proteins by Cell-Free Expression 367
 Aisha LaGuerre, Frank Löhr, Frank Bernhard, and Volker Dötsch
 1. Introduction 368
 2. Core Considerations for the Cell-Free Generation of MP Samples 369
 3. Specific Challenges of NMR Studies with MPs 372
 4. An Emerging Perspective: NMR with NDs 374
 5. Labeling of Cell-Free Synthesized MPs with Stable Isotopes 375
 6. Reducing Scrambling Problems 376
 7. Peroxidation of Cell-Free Synthesized MPs 380
 8. Conclusion 382
 Acknowledgments 382
 References 382
16. Selective Amino Acid Segmental Labeling of Multi-Domain Proteins

Erich Michel and Frédéric H.-T. Allain

1. Introduction 396
2. Methods 396
3. Conclusion 417
Acknowledgments 419
References 419

17. Labeling Monosaccharides With Stable Isotopes

Wenhui Zhang, Shikai Zhao, and Anthony S. Serianni

1. Introduction 424
2. Terminology to Describe Different Monosaccharide Isotopomers 425
3. Introducing 13C into Monosaccharides 427
4. Multiple Labeling of Aldoses Via Chain Inversion 438
5. Labeling at the Internal Carbons of Aldoses 440
6. Extension to Biologically Important Aldoses 442
7. Relative Carbonyl Reactivities in Osones—Synthesis of Labeled 2-Ketoses 444
8. Manipulation of Three-Carbon Building Blocks in Enzyme-Mediated Aldol Condensation 445
9. Manipulation of Isotopically Labeled α-Fructose 17 and α-Sorbose 25 452
10. Concluding Remarks 452
References 455

Section IV
RNA Labeling

18. Stable Isotope-Labeled RNA Phosphoramidites to Facilitate Dynamics by NMR

Christoph H. Wunderlich, Michael A. Juen, Regan M. LeBlanc, Andrew P. Longhini, T. Kwaku Dayie, and Christoph Kreutz

1. Theory 462
2. Equipment 463
3. Materials 464
4. Protocol 467
5. Step 1: Synthesis of 6-13C-Uridine TOM Phosphoramidite 468
6. Step 2: Synthesis of 6-13C-Cytidine TOM Phosphoramidite 473
7. Step 3: Chemical RNA Synthesis 477
8. Step 4: Applications 484
9. Conclusions 490
Acknowledgments 491
References 492
19. *In Vivo*, Large-Scale Preparation of Uniformly 15N- and Site-Specifically 13C-Labeled Homogeneous, Recombinant RNA for NMR Studies 495

My T. Le, Rachel E. Brown, Anne E. Simon, and T. Kwaku Dayie

1. Theory 497
2. Equipment 499
3. Materials 502
4. Protocol 510
5. Step 1: Pilot of the Expression of the Recombinant tRNA-Scaffold Plasmid in Wild-Type K12 E. coli 512
6. Step 2: Double Selection of High-Expressing E. coli Clones 514
7. Step 3: Large-Scale Expression in Labeled SPG Minimal Media 517
8. Step 4: Total Cellular RNA Extraction 518
10. Step 5b: Purification of the Recombinant tRNA-Scaffold Using Affinity Chromatography 523
11. Step 6: Excision and Purification of the RNA of Interest 524
12. Step 7: NMR Applications 527
13. Conclusion 530
Acknowledgments 532
References 532

Olivier Duss, Nana Diarra dit Konté, and Frédéric H.-T. Allain

1. Introduction 538
2. Cut and Paste RNA Approach 540
3. Production of Small (<10 nts) Isotopically Labeled RNAs 546
4. Protocol A: Production of Small Spin-Labeled RNA Fragments 552
5. Protocol B: Production of Unlabeled and Isotopically Labeled RNA Fragments 554
6. Protocol C: Ligation 557
7. Summary and Outlook 559
Acknowledgments 560
References 561

Author Index 563
Subject Index 595